Course & Branch: MCA

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

Siddharth Nagar, Narayanavanam Road, Puttur – 517583

QUESTION BANK (DESCRIPTIVE)

Yea	r & Sem: III-MCA & I-Sem Regulation: R16	Regulation: R16			
UNIT –I					
	Introduction				
1.	What is meant by integration testing? Goals of Integration Testing?	12M			
2.	Explain white-box testing and behavioral testing?	12M			
3.	Explain the following concepts				
	(a) Model for Testing	06M			
	(b) Path Predicates	06M			
	(c) Path Sensitizing	06M			
4.	State and explain various dichotomies in software testing?	06M			
5.	Discuss about requirements, features and functionality bugs?	12M			
6.	(a) What are control and sequence bugs? How they can be caught?	06M			
	(b) Explain achievable paths with suitable examples.	12M			
7.	(a) Describe taxonomy of bugs.	06M			
	(b) Explain goals for testing and model for testing in software testing?	06M			
8.	Explain				
	(a) The Consequences of Bugs	06M			
	(b) Testing and Design Style	06M			
	(c) The Role of Models	06M			
	(d) Pesticide Paradox	06M			
9.	(a) Explain Interface, Integration and System Bugs.	06M			
	(b) Explain Describe phases in tester's mental life and state Complexity Barrier.	12M			
10.(a) Describe Requirements, Features and Functionality bugs.	12M			
	(b) Explain Path Testing Basics and Link Markers.	12M			
	(c) Describe Implement and Application of Path Testing.	12M			

Subject with Code : Software Testing(16MC833)

<u>UNIT –II</u>

Transaction Flow Testing and Data Flow Testing

1. (a) Define transaction flow graph and define transaction with an example?		
(b) Illustrate all c-uses/some p-uses strategies and discuss all p-uses/some cuses strategies?	12M	
2. (a) Explain births and mergers in a transaction flow testing.	06M	
(b) Explain various loops with an example?	06M	
3. Discuss in detail data - flow testing strategies	12M	
4. (a) Explain concatenated loops with an example?	06M	
(b) Distinguish Control Flow and Transaction flow.	06M	
5. (a) What are data-flow anomalies? How data flow testing can explore them?	12M	
(b) What is meant by a program slice? Discuss about static and dynamic program slicing.	06M	
6. (a) Explain the terms Dicing, Data-flow and Debugging.	06M	
(b)What is meant by data flow model? Discuss various components of it?	06M	
7. (a) Compare data flow and path flow testing strategies?	06M	
(b) Explain data-flow testing with an example. Explain its generalizations and limitations.	06M	
8. (a) Explain Transaction-flow Testing Techniques.	12M	
(b) Describe Data-Flow Testing Strategies.	06M	
9. Explain Motivation and Assumptions of Data Flow Testing.	06M	
10. Explain		
(a) Perspective	06M	
(b) Test Databases	06M	
(c) Data Flow Testing Terminology	06M	
(d) Applications, Tools and Effectiveness of Data flow Testing	06M	

<u>UNIT-III</u> <u>Domain Testing</u>

1. Discuss with example the equal - span range/Doman compatibility bugs.	12M
2. Discuss in detail about testability of Domains.	12M
3. What is meant by Domain Dimensionality.	12M
4. What is meant by nice - domain? Give an example for nice two - dimensional dom	ain. 12M
5. Discuss	
1. Linear domain boundaries	06M
2. Non linear domain boundaries	06M
3. Complete domain boundaries	06M
4. Incomplete domain boundaries	06M
6. Explain various properties related to Ugly-domains.	12M
7. State and explain various restrictions at domain testing processes.	12M
8. What is meant by domain testing? Discuss the various applications of domain testi	ing? 12M
9. With a neat diagram, explain the schematic representation of domain testing.	06M
10. Explain how one-dimensional domains are tested?	12M
11. Discuss in detail the domains and interface testing.	12M

SOFTWARE TESTING

Page 3

UNIT-IV

Paths, Path Products and Regular Expressions

1. Explain Regular Expressions and Flow Anomaly detection.	12M
2. Example Huang's theorem with examples	12M
3. Reduction procedure algorithm for the following flow graph.	12M
4. Write Short Notes on:	
a. Distributive Laws	06M
b. Absorption Rule	06M
c. Loops	06M
d. Identity elements	06M
5. Discuss Path Sums and Path Product.	06M
6. Discuss in brief applications of paths	06M
7. Whether the predicates are restricted to binary truth-values or not. Explain.	12M
8. What are decision tables? Illustrate the applications of decision tables. How is a decision	table useful
in testing? Explain with an example.	12M
9. How can we determine paths in domains in Logic based testing?	12M
10. How the Boolean expression can be used in test case design.	06M
11. Flow graphs are abstract representations of programs. Justify?	06M
12. Explain prime implicant, sum of product form and product of sum form.	06M
13. How can we form specifications into sentences? Write down different phrases that can be	e used for
words?	06M
14. Explain about the ambiguities and contradictions in specifications?	06M
15. Demonstrate by means of truth tables the validity of the following theorems of Boolean a	ılgebra
a. Associative Laws	06M
b. Demorgan's theorems for three variables	06M
c. Distributive Law	06M
d. Absorption Rule	06M

SOFTWARE TESTING

UNIT-V

State, State Graphs and Transition Testing

1.	The behavior of a finite state machine is invariant under all encodings. Justify?	12M
2.	Write testers comments about state graphs	06M
3.	What are the types of bugs that can cause state graphs?	06M
4.	What are the principles of state testing? Discuss advantages and disadvantages.	06M
5.	Write the design guidelines for building finite state machine into code.	06M
6.	What are the software implementation issues in state testing?	06M
7.	Explain about good state and bad state graphs.	06M
8.	Explain with an example how to convert specification into state-graph. Also discuss how	,
	contradictions can come out.	12M
9.	Write short notes on:	
	i. Transition Bugs	06M
	ii. Dead States	06M
	iii. State Bugs	06M
	iv. Encoding Bugs	06M
10.	. Write a partition algorithm.	06M
11.	. Discuss node reduction algorithm.	06M
12.	. How can a node reduction optimization be done.	06M
13.	. What are the matrix operations in tool building.	06M
14.	. Discuss the algorithm for finding set of all paths	06M
15.	. How can a relation matrix be represented and what are the properties of relations?	06M
16.	. Explain cross-term reduction and node term reduction optimization.	06M
17.	. Write about matrix powers and products.	06M
18.	. What are graph matrices and their applications?	12M

Prepared by: DR. A. SWARUPA RANI, Assoc. Professor, Dept. of MCA

SOFTWARE TESTING